THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Suggested solutions to homework 3

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

5.34. Show that if a normed space has *n* linearly independent vectors, then so does its dual space.

Solution. Suppose x_1, x_2, \dots, x_n are linearly independent vectors in X. Then $Z := span\{x_1, \dots, x_n\}$ is a subspace of X. Define bounded linear functionals f_1, \dots, f_n on Z by $f_i(x_j) = \delta_{ij}$. By Hahn-Banach theorem, each f_i has an extension $\tilde{f}_i \in X^*$.

If $\sum_{i=1}^{n} a_i \tilde{f}_i = 0$ is the zero functional, then $\sum_{i=1}^{n} a_i \tilde{f}_i(x) = 0, \forall x \in X$. Take $x = x_j \in Z \subset X$ for each $1 \leq j \leq n$ and then $\sum_{i=1}^{n} \tilde{f}_i(x) = \sum_{i=1}^{n} a_i \tilde{f}_i(x) = 0, \forall x \in X.$ Take $x = x_j \in Z \subset X$ for each $1 \leq j \leq n$.

$$\sum_{i=1}^{n} a_i \widetilde{f}_i(x_j) = \sum_{i=1}^{n} a_i \delta_{ij} = a_j = 0, \quad \forall 1 \le j \le n.$$

Therefore, $\tilde{f}_1, \dots, \tilde{f}_n$ are linearly independent vectors in X^* .

6.5. Let X be a Banach space, Y a normed space, and $T_n : X \to Y$ a sequence of bounded operators such that $\sup\{||T_n|| : n \in \mathbb{N}\} = \infty$. Show that there exists $x_0 \in X$ such that $\sup\{||T_nx_0|| : n \in \mathbb{N}\} = \infty$.

Proof. This is an immediate consequence of the Uniform Boundedness Theorem. Otherwise if for every $x \in X$ we have $\sup\{||T_n x|| : n \in \mathbb{N}\} < \infty$, i.e.,

$$||T_n x|| \le c_x, \quad \forall n \in \mathbb{N},$$

where c_x is a real number, then the sequence of the norms $||T_n||$ is bounded and contradiction arises.

6.7. Solution.

(a) \Longrightarrow (b): There exists M > 0 such that $||T_n|| \leq M, \forall n$. So for every $x \in X$,

$$||T_n x|| \le ||T_n|| ||x|| \le M ||x||.$$

(b) \Longrightarrow (c): For every $x \in X$, there exists $M_x > 0$ such that $||T_n x|| \leq M_x, \forall n$. Then for every $f \in Y^*$,

$$|f(T_n x)| \le ||f|| ||T_n x|| \le M_x ||f||.$$

 $(b) \Longrightarrow (a)$: follow from the Uniform Boundedness Theorem immediately.

(c) \Longrightarrow (b): Let us write $T_n x = x_n$ and $f(x_n) = g_n(f)$. Then $(g_n(f))$ is bounded for every $f \in Y^*$, so that $(||g_n||)$ is bounded by Uniform Boundedness Theorem, and it holds that $||g_n|| = ||x_n|| = ||T_n x||$.